Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum.
نویسندگان
چکیده
G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels regulate cellular excitability and neurotransmission. In this study, we used biochemical and morphological techniques to analyze the cellular and subcellular distributions of GIRK channel subunits, as well as their interactions, in the mouse cerebellum. We found that GIRK1, GIRK2, and GIRK3 subunits co-precipitated with one another in the cerebellum and that GIRK subunit ablation was correlated with reduced expression levels of residual subunits. Using quantitative RT-PCR and immunohistochemical approaches, we found that GIRK subunits exhibit overlapping but distinct expression patterns in various cerebellar neuron subtypes. GIRK1 and GIRK2 exhibited the most widespread and robust labeling in the cerebellum, with labeling particularly prominent in granule cells. A high degree of molecular diversity in the cerebellar GIRK channel repertoire is suggested by labeling seen in less abundant neuron populations, including Purkinje neurons (GIRK1/GIRK2/GIRK3), basket cells (GIRK1/GIRK3), Golgi cells (GIRK2/GIRK4), stellate cells (GIRK3), and unipolar brush cells (GIRK2/GIRK3). Double-labeling immunofluorescence and electron microscopies showed that GIRK subunits were mainly found at post-synaptic sites. Altogether, our data support the existence of rich GIRK molecular and cellular diversity, and provide a necessary framework for functional studies aimed at delineating the contribution of GIRK channels to synaptic inhibition in the cerebellum.
منابع مشابه
An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملComplex subunit assembly of neuronal voltage-gated K+ channels. Basis for high-affinity toxin interactions and pharmacology.
Neurons require specific patterns of K+ channel subunit expression as well as the precise coassembly of channel subunits into heterotetrameric structures for proper integration and transmission of electrical signals. In vivo subunit coassembly was investigated by studying the pharmacological profile, distribution, and subunit composition of voltage-gated Shaker family K+ (Kv1) channels in rat c...
متن کاملThe Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells
Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...
متن کاملCell-type-dependent molecular composition of the axon initial segment.
The exact site of initiation and shape of action potentials vary among different neuronal types. The reason for this variability is largely unknown, but the subunit composition, density and distribution of voltage-gated sodium (Nav) and potassium (Kv) channels within the axon initial segment (AIS) are likely to play a key role. Here, we asked how heterogeneous are the density and distribution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 105 2 شماره
صفحات -
تاریخ انتشار 2008